
On the Bellman function for the time-optimal process problem 791 

dx 2% = up (9 + Y2), -yg- = Ulr & ?(ur2+u221 Q 9 

It is easy to show that the point z = 0, y = 0 is not an interior point of the set 
F : {I z I < 1, y = 01, but that the Bellman function satisfies the Lipschitz condition in 
the neighborhood of every point of space except at the origin. 
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The problem of bringing a system with lag to a specified position by suitable choice of 
the initial conditions is considered. The conditions of solvability of this problem are 
formulated in terms of the coefficients of the eqautions. 

For simplicity we shall consider equations with constant coefficients defined in the 
n-dimensional Euclidean space &, , 

z.(t) = 5 sft -- IQ> Ri + z(t -h) R” i_ f (d), t>o (1) 
id 

where J: (t) is an n-dimensional vector. We assume that the ooefftcients of Eq, (1) satis- 
fy the following Conditions (A): the lag constants hi are such that h, > h,_, > . . . 
. . . > h, > 0, that the constant h > 0, that the continuous function f (t) assumes 
values from the space E ,,, and finally, that Bi, i = 0, . . ., m, are square n X n 
matrices with constant elements. We also stipulate that all the vectors from E,ocurring 
below are to be regarded as vector rows ; we denote the j th coordinate of a vector iiom 
E, bv the same letter as the vector with the subscript j ,. For example, the vector s(t)o: 
= ($1 (t), - * -9 %-n(t)). 
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The solution 2 (t) of Eq. (1) for t > 0 is subject to the initial conditions 

5 (0) = x0, x (t) = cp (t, for - h, g t < 0, 

s'(t) -9 (t) for - h,<f go (2) 
Here the vector z. C3 En and the initial dictions cp (t), II, (t) with values f@m the 

space E, are given; the functions cp (t), I# (t) are Boref-maasurable, the ticden 9 (t) 
is bounded, and 11 rp If < 00, where 

lntegradng Eq, (1) successively over the intervals [klb, (k + l)li], k = 0, 1, . . ., 
we SW that fuUi&nent of Conditions (A) mean that there exists a unique pair of func- 
tions 5 (b), z’(t) which satisfies initial condition (2) for t < 0 and Eq, (I) for almost 
all d > 0 (in the ~ebesgue measure.]; moreover, x' (t) is bounded and Lebesg~~- 
integrable over any finite interval, and t 

X(t)=X(O)+jX*(S)dS for t>,O 
0 

We shall denote the solution of Eq. (1) under initial conditions (2) by x (E, q, cp, ‘p) . 
Problem 1. Let the vectors Q, x1 GZ SF,, the initial function $ (t), and the 

tr~?ant T > 0 be giveri. Wt are to determine the initial function cp (0) (the argument 
6 varier in the range 4, < 8 < 0) with the smallest possible norm (3) in such a 
way that 5 (T, go, cp, 9) = x1. 

We note that by virtue! of El]. Sect. 12 the results obtained below are also valid for 
norms of the initial functions defined by any of the formulas 

vrai max 5 1 (pi (t) J, sup i ‘pi’ (q, - h ,<tx<O 
i=-l ipi 

Howev@r, to be specific, we shall limit outselves to the norm defined by Eq, (3). 
Let us find the Cauchy formula expressing the solution 2 (t) of Eq. (1) as a function 

of initial cundidons (2) and the i~o~~i~~ f ft). To this end we inuoducc the 
function x (s) which is equal to zero for s =f 0 and to unity for s > 0 , and set 

a (4 = It/h1 f x (t - h [t/N), whfze [tl is the whole part of the number t . We 
can determine the ( n X n )-matrix y (s, t) by means of the relations 

Y(4 q = I, y(s, qro (s> f) 

where I is an identity matrix and Bj denotes the j th power of the matrix B. 
The t~luti~n 5 (t) of ptobkm (l), (2) can then be written aa 

m 0 at+--l 

t-/t) 

-+ _$, q (s) 2 8&i (8 t- ih, t) d s-i_ 2, jj(s)&‘y(s-fib t)ds (5) 
i=i j=o u 
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To prove Eq. (5) we multiply both sides of 5% (1) by the matrix y (s, t) on the right 
and integrate the result from zero to r. This yields 

f 

si ix- (s) - 5 5 (s -hi)Bi-f(s)]y(s, tps=ix+-h)B.II(S, Qds 
0 i=l 0 

Recalling (2), we integrate by parts in the left side of this relation. This is possible by 
virtue of the aforementioned absolute continuiry of z (t). Further, on the basis of (2) 
we obtain 1 0 

s 
r’ (s - h) Boy (s, t) ds = 

s 
9 (4 Boy (s + h, t) ds f- 

0 -h 
f 

+)f(s)Bo&s+h, f)ds 
0 

We replace the derivative 5’ (t) by its expression given by the right side of Eq, (1) and 
transform the result as ahove. Continuing with this iterative process, which consists in 
the successive replacement of the derivative x’ (t) in accordance with Eq, (1) and con- 
tains only a finite number of steps, namely a (t) , we see that the expression (5) is valid. 

Setting t = T in formula (5) and denoting the value of the function a (t) at the 
point T by a, we conclude that if Problem 1 had a solution, then the following equation 
would hold: 

p=$ \ rp(a)R* az:B,jy(s+hi + $3 T)ds (6) 
+i Ai H 

Nere the vector p is given by the expression 
CI 

P = x1 - $0~ (0, T) - j 2 9((s) , B,‘y(sfjh, T)ds- 
n j=i 

a-i T 

- 2 5 fts~~~~~~~~f~, T)ds (7) 
j=o 0 

If the vector 8 = 0, then Problem 1 always has a solution, namely 9, (0) E 0, so 
that from now on we confine our attention to the case fl # 0. We set 

U-1 

ri (T, s) = 2 &$i (s + h, -t- ih, T), --h&s<0 
j=O 

ri (T, s) = 0, -~im<s<-dhr 

and rewrite relation (6) as 

p = i ~JJ(s)~ Biri(T, s)ds (8) 
-‘+n i==l 

Equation (8) implies that Problem 1 for Eq. (1) has been reduced to the problem of 
moments (e, g. see 11). Sect. 16). 

Let us formulate the ~lvabi~~ conditions for Problem 1 following the results of 
monograph P]. To this end we must define the set L of vectors I C= E, such that 

pr’ = l& t . . . + LP, = 1 

(here and below the prime denotes transposition) and the set P of functions of the form 
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krlF9 + *** f LTn w-~m~e~o,zEL) 
where yt (0) are the columns of the matrix B,r, (T,e)+ . . . + Bmrm (T, 8). 

Lemma 1. Let the coefficients of Eq. (1) satisfy Conditions (A) and let the vector 
@ # 0. Then 

1) the function q, (0) is the solution of Eq. (6) if and only if 
--. 

0 

s 
g(s)cp(s)ds = I, l! (0) E p 

-hm 

2) Problem 1 has a solution if and only if 

p. = m%awP II g II > 0 (9) 

(here 11 g 11 is defined by Eq. (3)). 
5) if pa > 0 and if miuimum (2) is attained on the function go (8)) then the 

norm of the krnction which solves Problem 1 cannot be made smaller than pod, and the 
optimal initial function p. (0) such that 11 tp,, iI= pa-l has the folding maximum 

pwpcrty: 0 0 

Ii 
e tp w go’ teds = maw, ~kit-~~-~ s ‘p w go f@ i-28 

-m 4m 

The validity of Lemma I follows directly from the solution of the problem of momenta 
( Cl], Sect 16). 

NOW let us derive the conditions in terms of ccefficients which wilI enable us to draw 
conclusions concerning the existence of a solution of Probiem 1 for a+-dimensional equa- 
tiOllS z’.(t) x z (t) BE + z (t - h) Bs + z’ (t - k) B:, tt>ot fl0) 

Theorem 1. If h > 0, if the matrices B, and B, + B&, are uoadegenerate, 
and if B& = BtB,, i = i,2, then ProbIem 1 for Eq, (10) is solvable for all vectors 
5, x1. 

pro o f. Let the variable r vary in’ the range 0 q + < hi. Then, by virtue of Lemma 
1, we need merely show that the columns of the matrix 

i==O 

are Iinearly independent, Let us 8ssume that the opparite is true, i.e. that there exists 
a nonnero vector c for which a--L 

BP 2 B&(r+jk,T)c’rO @4+4G 

j=O 

l%is and the conditions of Theorem 1 imply the identity 
a-l 
2 Bt y (Z _t jh, T)p’ = 0 

+a 

Moreover, making use of relations (4) for the fundamental matrix v(s, t) of system 
(lo), we see the valfdlty of the following chain of equations: 

a-i-1 
ay (t + fh, 2’) 

t%r 
+BI 2 Bo~Y(~+O-I-~)W =-&a~8~“y(r+(i+i)k,T) (El) 

I4 i=l 

Here the integer f runs through the values from 0 to a - 1. 
Multi&%i@ng the I th equation of (12) by Boi on the left and by c’ on the right and 
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summing the result over i from 0 to a - i, we find by virtue of (11) that 
a-1 a-i-1 a-la-i 

[BI 2. 2 BFi y (z + (i + i) h, 2’) + Be 2 ~2 %y-’ y (z + (ifj) h J)) c’ = 0 (13) 
i=l j=c+ iSO j=l 

But 
a-1 o-i-1 0-l a-1 

ZB s~yft.+(i+j)h,T)= 2 2 BJ y (7 + jh, T) = “r: iBd y (r +.!% T) 04) 

L=i i=o i=i j=i! j’_1 

and similarly, with allowance for (4). 
P-l a--i a-2 a-1 o-1 

xz 
$.,+j-ly(~+ (i+f)h,Z')= 2 2 ?3im1i;(z + jh,T)== z jBp y(f f jh, 2’) 

pD j=l i=o j-i+1 j==e 

This and (13), (14) give us the equation 

(Bs + BIBo) a$ jBivl y (7 + jh, T) c’ = 0 
j=l 

Hence, 
a-1 

Tt 0 
ZBi-l y (z + fh, 2’) c’ = 0 t O*;r0 w 

i=l 

Let us add to identiry (15) system of equations (12), with the index I in this case run- 
ning through values from 1 to & --1, Multiplying the f th equation of (12) by fB;-1 on 
the left and by ci on the right and summing the result from 1 to a - 1, we arrive, as 
with (13)-(X5). at the formula 

a-l 

2l Bt*y((t+ih,T) iti; ‘) c'=O 

i=2 

(W 

Continuing the process used to derive (X5), (16), we infer on the basis of mathematical 
induction and from the conditions of Theorem 1 that the result of the k th step takes the 
form of the rekttions a-i 

(B, + BIBo) 2 rrrBf-’ y (z + ih, T) c’ = 0, D(;+<h (17) 
i=k 

where the numbers ykj are equal to zero for k > j, and are given by the relations 

7nje= 9 --1 rkj 
_B Tk-l\ i-1, k&l 

for k f j 
i=k 

For i > 0 all the yii = 1 ; hence, setting k z u--I in formula (17). we find in actor- 
dance with (4) that Id = 0. However, this is not possible, as it contradicts the above 
assumption whereby cc’ # 0. This contradiction proves Theorem 1. 

Note 1. In proving Theorem I we showed that the columns of the matrix 
a-i 

are linearly independent. This means that the matrix 

G = [ r’(s)r(s)ds 
-h 
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is nondegenerate. Hence, applying the method of undetermined Lagrange multipliers 
( [ 13. Sect. 18). we find that under the conditions of Theemm 1 the optimal initial func- 
tion cp (7) which solves Problem 1 for Eq. (10) is given by 

cp (z) = fiG-‘r’ (z) 

Theorem 2. Let B&, = BIB,, i =O,l,andlettheconstant h>O. The 
nondegentracy of the matrix B2 then follows from the solvability of Problem 1 for Eq, 
(10) for all vectors z,,, zi E E,,. 

Pro0 f. By virtue of Lemma 1. Problem 1 for Eq. (10) is solvable for all vectors z,, 
21 only if (9) is fulfilled. NOW let us suppose that the rank of the matrix B, is m < n 

and show that condition (9) is violated in this case. Since, by virtue of formula (?). we 
can choose suitable values tO, 11 for any specified vector g E En, we chm a vector 
B not contained in the space generated by the rows of thu matrix B, (of dimension 
m < n) and a nonzero vector 1, E L such that 

3l’o = 1, B,l’,, = 0 

From this and (4) we obtain the equation 

B.&s. T) Z'O E 0 for s > T (19) 

Multiplying Eq. (4) by B, on the left and by I'o on the right, we find that for S< T 
the function r(s) = B,y(s, T) 2'0 is the solution of the equation 

a-1 

P' (b) = - 2 [&B&r (s + jh) f B&oi~ (s f h f jh)l 

j=O 

under zero initial conditions (19). This means that B&S, T) Z’. z 0 for all s < T, 
which is impossible, since it contradicts Eq. (9). Theorem 2 has been proved. 

Theorem 3. Let BIB0 = Bat, i = 1, 2, and let the constant h > 0. The 
solvability of Problem 1 for Eq. (10) for all zo, zi then implies that the rank of the 
matrix 

K = {B,, B,B,, . . . . B,B;-‘, B, 7’- HA, (Ra + BIB,,) BI, . ..y 

(B? + &&mR-‘~ 

is equal to the dimension n of system (10). 
Proof. Let us suppose that the ranh of the matrix K is m < R and show that equa- 

Uty (9) (which ls, by virtue of lemma 1, the necessary condition of solvablllty of Prob- 
lem 1 for Eq. (10)) is violated in this case. As in our proof of Theorem 2, the latu?r 
assumption implies the existence of a nonzero vector lo E L such that 

PO’ = 1, BtBtlot = 0, (Bz + &‘lB,) Bl’L,’ = 0, i = 0, . * ‘-1 

Hence (see [ 11, p. 139). and for all integers i > 0 we have 

BaBbo = 0, (B2 + BIB,) B,‘l,’ - 0 (20) 

i,et us conskier the analytic function P(S) = B,eB1(T--s’~~ of the variable s. By virtue 
of (20) we have the equations 

dir (8) 
I 

=: B&l, (- 1)’ = 0, i = 0.1, . 

ds <=T 

from which we see that all the derivatives of the analytic function r(s) are equal to 
zero for s = T. This means (e. g. see @]) that r(s) = 0 for all s. In similar fashIOn 
we can prove that the identity 
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rl (5) = (B2 + BOB]) e B1 (T-9 1,‘s o* (21) 
holds for all s 

By virtue of (4) the functions r(s) and r&) coincide on the segment 2’ - h Q s < 2’ 
with the functions B&s, T) 1’0 and (B, + B,B,)y(s, T) l’. ; this means that for 2’ -h < 
<s<Twehave 

Bezi (8, Tf 1,’ =(& -+ B,Bl) Y(uNb=O (22) 

Further, with allowance for (4} we find that 
5 

y(s,T)= eBi(T-s)_ 
c eB1 (r-s) (BIB0 + &) y (1 + h,T) dt (23) 

TL-h 

for T - 2K<,s~T--_. 
This and formulas (21),(22) imply the relations 

y (s,T) 1,’ = PI ( T-sf lo’* T--2h<s<T- h (24) 

which, by virtue of the equatiOm $6) = F&) = 0 , enable us to infer that identities (22) 
are also valid for s E[T - 2h, T].NOW let us suppose that identities (22) hold for 
T - kh < s < T (the integer k 2 2). Then, since by (4) and the conditions of Theorem 
3 we have Y (T - kh,T)e ekBlh 4 I’ I& + WI) y (~1 T)I 

where V(Z(n)) is a linear functional defined on the functions Z(rJ of the argument 
~1 E IT - kh, T], it follows that formulas (22), as (23), (24), are.,also valid in the interval 
IT - (k + 1) h, T]. By mathematical induction we infer from this that Eqs. (22) are 
valid for ail s Q 3’. This is impossible, however, since these equations imply the relation 

Bz g B,j y (t + jh,T) Ii = 0, o<:+,<h 

j=-o 

which contradicts condition (9). Theorem 3 has been proved. 
Note 2. By virtue of certain results of p] for B, s 0 and 0 < T < h the 

requirements of Theorem 3 are not only necessary, but also the sufficient conditions of 
solvability of Problem 1 for Eq, (10). 

Finally, let us cite certain solvability conditions for Problem 1 in the case of one- 
dimensional equations with constant coefficients , 

m 

5’ (t) = 2 b*x (t - 4) -+ az: P> + bf (8 - h>, t>o 
i=i 

Theorem 4, If bi > 0, hi > 0 , i = 1, . . ., m, and if the constants h > 0, 
bo 2 0, a& > 0, Problem I for Eq. (24) is solvable for all se:,, q. 

‘Pro o f. Since the coefficients of Eq. (24) are constant, the ~ndamen~l solution 
Y(t - s) of this equation, which depends solely on the difference between the arguments, 
is defined by the relations 

Y (0) = 1% Y 0) so, t<o 
By virtue of Lemma 1 we need merely establish the positiveness of the function sift) 

for all 0 < t < T. To this end we denote one-dimensional Wiener processes mutually 
independent for all distinct values of the indices hy Eij (t) and define the process z(t) 
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by means of Ito’s stochastic differential equation with lag p]: 

+ i1 j&b,‘(t - ih) d& (t), o < t d T !26) 
ial 

under the initial conditious 
z(O) = 1, z(t) = 0, t<O <27) 

As in the proof of Theorem 1 in [3], we can verify the fact that the solution z(t) of 
problem (26), (27) for certain constants cl, cg satisfies the estimate 

Mupza (t) g Cl& (28) 

(N represents the mathematical expectation) fnsm which, on the basis of Ire’s formula 
( (41, p. 506). we infer that y(t) = ~%~(t). But 1Ciz*ft) > f,v~(t)]~, so that to prove Theo- 
rem 4 we need merely verify that r(t) = Mz(t) > 0 for 0 ( t d T, l3y virtue of Ito’s 
formula and relations (26)-(28) we find that the function r(t) is the solution of the 
ordinary differentid equation p’ (tj = l/2 ar (t) , o<t<T 

under the initial condition r(O) = 1. Hence, r(t) > o for all 0 < t g T. Theorem 5 
has been proved, 

Note 3. Repeating verbatim the argument used to prove+ Theorems 2-4, we see 
that they are also valid for inhomopous eqnations of the form (10). 

Note 4. Some of the nssults of the present study can be readily extended to equa- 
tions with variable coefficients. 

Exampie 1. Let us consider the one-dimensional equation 
s’(t) = t(t - hf -+ z’(t - 2h), t>o, h>O 

Let the number z0 = I, s1 = 2 + k, the initial function $(@) E 0 , and the instant 
T = 2h. Then y(9 + h, 2h) = 1 - e for -h < 0 $0 and the constant 0 P= 1 (see 
formula (6)). From this and from (9) we infer that p% = ft -+- hz i_ I,$ h3 > 0. Hence. 
the opdmal resoivent rppf@), which mnst satisfy the conditions 

n n 

s 
‘P” (s) ds = po-2, c cp (s) y (s f h, 2h) ds = 1 

is equal to 
-h :h 

cp (8) = PO’L (1 - 0). -hgeQo 

Example 2. The one-dimensional equation t-(to T z-(t) +T’ (f - il) -+ x (t - ii), 

t >O, h > 0 is given. 
tit us sun-e that x0 = i, ;tl = 28, that the constant T = h , and. that the intial 

function g(e) = 1, t--n < d d 0). It is easy ro show that g(e f h, h) = ewe. In accord- 
ance with Items (1) and (2) of Lemma 1, the optimal initial function cp(B) is equal to 
gi(e) = peg e-‘, since the constant p = 1 and 2p?0 = & -i. 
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THE TIME-OPTIMAL CONTROL PROBLEM IN SYSTEMS WITH 

CONTROLLINQ FORCES OF BOUNDED MAGNITUDE AND IMPULSE 
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The problem of time-optimal control is considered in the case where the controlling 
forces are bounded in magnitude and in impulse at the same time. The study is carried 
out with the aid of attainabillv domains. The case where the boundaries of these do- 
mains have plane portions and comers is considered. The problem of optimal control 
synthesis is solved for certain second-order systems with the indicated restrfctions im- 
posed on the controlling forces. 

1. Strt8mrnt of the problem, Let us consider the control system described 
by the following Linear matrix differential equation with real constant coefficients : 

dxldt = Ax + Bu U-1) 
Here 5 = 11 zi 11 , A = 1) aij 11, B = 11 bj, 11, u = 11 us 11 are matrices of order 

(TZ x i), (TZ x LT), (TZ x T), (r x 1) . =pecti=ly. and us = US (t) is a measu- 
able function of time which satisfies the following resuicti>ns simultaneously : 

1% (0 I G MS (M, = const > 0) (4.2) 

r,u,(T)IdvG,O (cso=const>o) (1.3) 
0 

By b, (6 = 1, . . . . r) we denote the s th column of the mauix B (b, # 0 for all * = 1 I 
. ..) r.). Condition (1.2) expresses the boundedness of the controlling force, and condition 
(1.3) expresses (from the physical standpoint) the boundedness of the impulse of the 
controlling force. Inequality (1.3) in certain cases represents the limitation of the pro- 
pellant capacity of a thruster. 

We shall consider the problem of bringing system (1.1) to the origin in the minimum 
time by means of a control which satisfies conditions (1.2), (1.3) (e. g. see [l], and, 
among other things, the problem of synthesizing the time-optimal control. 

When restriction (1.2) alone is imposed, the time-optimal control is, as we know 
@- 51, a relay control (we denote the minimum time in this case by 8 = 8 (x)) . The 
problem of synthesizing such a conuol consists in splitting the space &composed of 
the phase coordinates x1, . . . , x, by the switching surfaces into domains in which the 
controls US (t) assume the values M, and --M, (s = 1, . . . )’ r). once this splitting 
has been effected, the optimal control is known as a function of the phase coordinates 


