On the Bellman function for the time-optimal process problem 791

dz d ———
G =m g =uE@ 4y, Vet <l

It is easy to show that the point z = 0, y = 0 is not an interior point of the set
F:{z]<1, y= 0) but that the Bellman function satisfies the Lipschitz condition in
the neighborhood of every point of space except at the origin,
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The problem of bringing a system with lag to a specified position by suitable choice of
the initial conditions is considered, The conditions of solvability of this problem are
formulated in terms of the coefficients of the eqautions,
For simplicity we shall consider equations with constant coefficients defined in the
n~dimensional Euclidean space E,, ,
m
F()= 2at—h)Bi+a(—MBt 1), t>o0 )
=
where z () is an n~dimensional vector, We assume that the coefficients of Eq, (1) satis~
fy the following Conditions (A): the lag constants /; are such that A, > Apey = . . .
ess 2> by > 0, that the constant % >> 0, that the continuous function f (¢) assumes
values from the space K, and finally,that B;, i = 0, .. ., m,are square n X n
matrices with constant elements, We also stipulate that all the vectors from £, ocurring
below are to be regarded as vector rows; we denote the j th coordinate of a vector from
E, by the same letter as the vector with the subscript j . For example, the vector z(t)=
= (21 (t), . - ., 24(1)).
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The solution z () of Eq. (1) for £ >> 0 is subject to the initial conditions
T 0) =a 2(t) =@ () for —hy <t L0,

(@) =% () for —A<EKO (2)
Here the vector 7, < E,, and the initial functions ¢ (£), ¥ (¢) with values from the
space E,, are given; the functions ¢ (¢), ¥ (¢) are Borel-measurable, the function P (£)
is bounded, and || | <C oo, where

[

7 t!’
fol={§ 2 oer@as) ©
oy i==d ‘
Integrating Eq, (1) successively over the intervals [kh, (k-+4)A), £ = 0,1, .. .,
we see that fulfillment of Conditions (A) mean that there exists a unique pair of func-
tions  (¢), =" (f) which satisfies initial conditions (2) for ¢z <C 0 and Eq. (1) for almost
all ¢ > 0 (in the Lebesgue measure); moreover, z (f) is bounded and Lebesgue-

integrable over any finite interval,and |

z(t)=z(0)+ \= (s)ds for 30
0

We shall denote the solution of Eq, (1) under initial conditions (2) by = (£, Zp, 9, ) .

Problem 1, Letthe vectors z,, 7, & E,,, the initial function { (), and the
wnstant ' > O be given, We are to determine the initial function ¢ (0) (the argument
8 varies in the range —h,, << 0 << 0) with the smallest possible norm (3) in such a
way thatz (T, z, @, V) = 2;.

We note that by virtue of [1], Sect, 12 the results obtained below are also valid for
norms of the initial functions defined by any of the formulas

n n

vrai max 2 |®; (£)], sup Zq)f(t), —h, <t<<O
im=q i=1

Howevesr, to be specific, we shall limit ourselves to the norm defined by Eq, (3).

Let us find the Cauchy formula expressing the solution z () of Eq, (1) as a function
of initial conditions (2) and the inhomogeneities f ({). To this end we introduce the
function ¥ (s) which is equal to zero for s = 0 and to unity for s > 0 , and set
a (t) = [t/h] + y (¢ — h [t/h]), where [¢] is the whole part of the number {. We
can determine the (n X n )-matrix y (s, ¢) by means of the relations

m affi—1
Web o N D BBy th R © s
=1 j=o
y, ty=1, y(s, =0 (> (%)

where 7 is an identity matrix and B’ denotes the jth power of the matrix B,
The solution z (£) of problem (1), (2) can then be written as

m ] afi)y—1
zt) =2y (0. )+ 2 \ @(®)B: X Boy(s—hi+jh, )ds
i=1 ——hi =0

aft) a(t)—1 ¢t

“ el
+ S w) DByy(s+jh Hds+ 2 NI Bay(s-rih tyds  (5)
i

j=1 =0 @
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To prove Eq, (5) we multiply both sides of Eq, (1) by the matrix y (s, ) on the right
and integrate the result from zero to ¢. This yields
{ m t
{[2(6) = 3 2 (s —h) Bi —1(9)] y (5, )ds = & (s — k) Boy (s, t)ds
o i=1 o
Recalling (2), we integrate by parts in the left side of this relation, This is possible by
virtue of the aforementioned absolute continuity of z (). Further, on the basis of (2)

we obtain t 0
(2 (s —m) Bay (s, tyds = (¥ (s) Bay (s + b, t)ds +
[i} —h

t

+\a () Boy (s + B, t)ds
0

We replace the derivative z’ (f) by its expression given by the right side of Eq,(1)and
transform the result as above, Continuing with this iterative process, which consists in
the successive replacement of the derivative 2° (f) in accordance with Eq, (1) and con-
tains only a finite number of steps, namely o (), we see that the expression (5) is valid,

Setting ¢t = T in formula (5) and denoting the value of the function o () at the
point T by &, we conclude that if Problem 1 had a solution, then the following equation

would hold: m o a—1 ‘
8= 0B D Boy(s +hi + jh, T)ds (6)
=t —h; F=0

Here the vector P is given by the expression
0

B=2,—2w (0, T) — { ¥(s) X Bo'y(s -+ jh, T)ds —

—h P
a—i T
— D\ 7@ Byuis + jh, T)ds G
=00

If the vector B = 0, then Problem 1 always has a solution, namely ¢ (8) = 0, so
that from now on we confine our attention to the case B = 0. we set

a—i
(T, 8)= X Biy(s+hi+ih T),  —h<s<O
=0
ri(T, s)=0, —}‘m<s<*hi
and rewrite relation (6) as 0 m
B={ o) 2 Biri(T, 5)ds (®)
—hm i=1
Equation (8) implies that Problem 1 for Eq, (1) has been reduced to the problem of
moments (e, g, see [1], Sect, 186),
Let us formulate the solvability conditions for Problem 1 following the results of
monograph [1]. To this end we must define the set L of vectors | = E, such that
B =18y + ...+ LB =1

(here and below the prime denotes transposition) and the set P of functions of the form
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i@+ .o+t (=2, <<0<0,i 1)
where ¥y; (8) are the columns of the matrix B,r, (T,8)+ . . . + Bpurm (T, 8).
Lemma 1, Let the coefficients of Eq, (1) satisfy Conditions (A) and let the vector
B == 0. Then

1) the function @ (0) is the solution of Eq, (8) if and only if
=

\ eo@ds=1,  g@O=P
iy
2) Problem 1 has a solution if and only if
po= Mingeepr|g| >0 (9)

(here || g || is defined by Eq. (3)).
3)if po > 0 and if minimum (9) is attained on the function g, (Y), then the
norm of the function which solves Problem 1 cannot be made smaller than p,~1, and the
optimal initial function @, (8) such that || @, [| = p,~" has the following maximum
property : 0 :
) @ (980" (5)ds = maxue, oma { 99 (9)ds
~tm m

The validity of Lemma 1 follows directly from the solution of the problem of moments-
([1],Sect, 16).

Now let us derive the conditions in terms of coefficients which will enable us to draw
conclusions concerning the existence of a solution of Problem 1 for n-dimensional equa-
tions z{t)y=z()Bi+z{t —h)Ba2 (t —h) B (t>0 (10)

Theorem 1. If 2> 0, if the matrices Byand B, -+ B,B, are nondegenerate,
and if ByB; = BBy, i = 1,2, then Problem 1 for Eq, (10) is solvable for all vectors
Zoy Ty.

Proof, Let the variable v vary in the range 0 < v < h. Then, by virtue of Lemma

1, we need merely show that the columns of the matrix
e 2nd §

By )\ Bd y (v + ik T)
j=a0
are linearly independent, Let us assume that the opposite is true, i, ¢, that there exists

a nonzero vector ¢ for which =1
B D Bly(x+ih T = (o<t <h)
F==0
This and the conditions of Theorem 1 imply the identity
a1
D By 4ih T)e =0 (11
Juuy
Moreover, making use of relations (4) for the fundamental matrix y{s, ¢) of system
(10), we see the validity of the following chain of equations:

Qe —1 a—i
WELBD) +p P Bya+G+N RN =—B F By N M T) (12)
Jumiy : ju1

Here the integer { runs through the values from 0 to @ — 1.
Multiplying the ith equation of (12) by Bo'on the left and by ¢’ on the right and
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summing the result over i from 0 to a — 1, we find by virtue of (11) that
a—] g—i=1 Qewe] Qi

(B3 D By G+NhD+B Y N BTy DRI =0 (13
Vo= g=e e =1
But
Qo) Qi a—ia—l - 2% ) .
33 Byt +nnn= 2 Y B yEFikD = S By +ihT) (U4
i=1 J=0 i) =i J==1
and similarly, with allowance for (4),
=3 aw=i a2 a1 . ) Q-] .
S Y EEtya RN =3 X BRyE+Hik D= X By +in D)
jum0 j=1 i=0 j=itl Jumy
This and (13), (14) give us the equation
o1
(Bz + BiBo) D) iBy y(v+jh, T)c' =0
J==1
Hence, a—1
DBty + i =0, o<tk (15)
=1

Let us add to identity (15) system of equations (12), with the index { in this case run-
ning through values from 1 to a—4. Multiplying the ith equation of (12) by 1B} on
the left and by ¢’ on the right and summing the result from 1 to a — 1, we arrive, as
with (13)-(15), at the formula

a1 s
S Bty e+ in) L‘.‘.i“;.‘_)_.c' =0 (16)
i=2

Continuing the process used to derive (15), (16), we infer on the basis of mathematical
induction and from the conditions of Theorem 1 that the result of the kth step takes the
form of the relations Qe

(Ba+ BiBo) 3 1B ¥y (x+in )’ =0, ocr<h an
i=k .
where the numbers yx; are equal to zero for % >>j, and are given by the relations
i
701' = i’ Tkj == 2 TK-13 [ K k>1
for k <j =k

For i > 0 all the y; = 1; hence, setting % = a—1 in formula (17), we find in accor~
dance with (4) that /¢’ = 0. However, this is not possible, as it contradicts the above
assumption whereby ec’ == 0. This contradiction proves Theorem 1,

Note 1, In proving Theorem 1 we showed that the columns of the matrix

a—1
r()=B, X By(t+jh, t) (—h<r<O)
=0
are linearly independent, This means that the matrix
o
G = S r'(s)r(s)ds (18)

—h
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is nondegenerate, Hence, applying the method of undetermined Lagrange multipliers
(1), Sect, 18), we find that under the conditions of Theorem 1 the optimal initial func-
tion @ () which solves Problem 1 for Eq, (10) is given by

@ (v) =BG (v)

Theorem 2. Let B,B, = B;B,, i = 0,1, and let the constant % > (. The
nondegeneracy of the matrix B, then follows from the solvability of Problem 1 for Eq,
(10) for all vectors z,, z, = E,,.

Proof, By virtue of Lemma 1, Problem 1 for Eq, (10) is solvable for all vectors z,
z, only if (9) is fulfilied, Now let us suppose that the rank of the mawix 8,is m < n
and show that condition (9) is violated in this case, Since, by virtue of formula (7), we
can choose suitable values z,, z1 for any specified vector p & £, we choose a vector
f not contained in the space generated by the rows of the mawix B, (of dimension
m < n) and a nonzero vector [, & L such that

Bllo =1, Byl = 0
From this and (4) we obtain the equation
Bay(s, NYlo=0 for s> T (19)

Multiplying Eq, (4) by B, on the left and by o on the right, we find that for s<< T
the function r(s) = B,y(s, T) l'o is the solution of the equation
a-1
r(s) = — ) [BuBo'r (s 4 k) + BaBo'r (s + b + k)]
=0
under zero initial conditions (19), This means that B,y(s, T) Vo= 0 for all s<< T,
which is impossible, since it contradicts Eq, (9). Theorem 2 has been proved.
Theorem 3. Let BB, = ByB;, i = 1, 2, and let the constant 2 >> 0. The
solvability of Problem 1 for Eq, (10) for all z,, z, then implies that the rank of the

MATE K — (B,, ByBy, ..., B:Bi™, By 4 BiBo. (Ba+ BiBy) By, ...,
(B + B1Bo)By" 1}
is equal to the dimension n of system (10),
Proof. Let us suppose that the rank of the matrix X is m < n and show that equa-
lity (9) (which is, by virtue of Lemma 1, the necessary condition of solvability of Prob-

lem 1 for Eq, (10)) is violated in this case. As in our proof of Theorem 2, the latter
assumption implies the existence of a nonzero vector [, & L such that

8l =1, BaBilt,' =0, (Ba+ BiBy) Bl =0,1=0,....n-1
Hence (see [1], p. 139), and for all integers i > 0 we have
B:BiMt) =0, (B2 + B1By) Bi'ty" =0 (20)

Let us consider the analytic function r(s) = B,eP*T~"0 of the variable s. By virtue

of (20) we have the equations ir (s)

., ) o
ds T BeBi'l) (— 1) =0, i=01,...

from which we see that all the derivatives of the analytic function (s) are equal to
zero for s= 7. This means (e, g, see [2]) that r(s) = O for all s. In similar fashion
we can prove that the identity
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ri(s) = (Ba+ BBy eB (T-9 1" =, @)
holds for all s
By virtue of (4) the functions r(s) and ry(s) coincide on the segment 7 — s << T
with the functions B,y(s, T) l'o and (B, -+ B B,)y(s, T) l'o; this means that for 7 —h <

SeSTwehave T =Bt BBy (s.T) L =0 (22)
Further, with allowance for (4} we find that

8
y(s,T) = eBr (T-8) __ Q eB S (BB 4 By (t + h,T)dt (23)
Toh
for 7 — 2a<{s<T—"h.
This and formulas (21),(22) imply the relations
gy =B TN T2 s<<T—h (24)

which, by virtue of the equations 7(s) = ry(s) = 0, enable us to infer that identities (22)
are also valid for s [T — 2a, T].Now let us suppose that identities (22) hold for
T — kh < 5 < T (the integer k > 2). Then, since by (4) and the conditions of Theorem
3 we have y(T — kh,T) = "B 4 V[(Bs + BoBr) y (1 T)]
where V(Z(m)) is a linear functional defined on the functions Z(z,) of the argument
T1 & [T — kh, T}, it follows that formulas (22), as (23), (24), are also valid in the interval
[T ~ (k 4 1) h, T]. By mathematical induction we infer from this that Eqs, (22) are
valid for all s < 7, This is impossible, however, since these equations imply the relation

a-1

Bzz ny(r-*—;‘h,f)l(;a(‘, 0Lt <h

Fouly
which contradicts condition (9). Theorem 3 has been proved,

Note 2, By virtue of certain results of [2]for By =0 and 0 << T < / the
requirements of Theorem 3 are not only necessary, but also the sufficient conditions of
solvability of Problem 1 for Eq, (10).

Finally, let us cite certain solvability conditions for Problem 1 in the case of one~
dimensional equations with constant coefficients,

m
T()= 2 b (t—h)+az(t)+ bz’ (t—h), >0
i=1
Theorem 4, 1f ; >0, h; >0, i =1, ..., m,and if the constants 4 > 0,
by > 0, ab, > 0, pProblem 1 for Eq, (24) is solvable for all Zg Zye
Proof, Since the coefficients of Eq, (24) are constant, the fundamental solution
y(t — s) of this equation, which depends solely on the difference between the arguments,
is defined by the relations

m a-1 a-1
v (=3} D bidyry (¢ — by — k) + 3} abgiy (¢ — i) 0<t<T 25)
imm] jem i=0

¥ (0) =1, y) =0 <0
By virtue of Lemma 1 we need merely establish the positiveness of the function ¥(z)
for all 0 < ¢< 7.To this end we denote one~dimensional Wiener processes mutually
independent for all distinct values of the indices by &; (t) and define the process z(2)
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by means of Ito’s stochastic differential equation with lag [3}:

m a-l
i ———
dz(t) = -5~ az(t)dt + Z 2 Va‘ib{,’z (8 — hy — ) dE; (8) +
foml jmeO
x-1
+ Vabgt 2t — ik) dEgi (1), 0<t < T (26)
jom}
under the initial conditions
70y = 1, z{t) = 0, <0 270

As in the proof of Theorem 1 in [3], we can verify the fact that the solution z(2) of
problem (26), (27) for certain constants ¢, ¢; satisfies the estimate

Mzt () < cpet (28)

(M represents the mathematical expectation) frem which, on the basis of Ito’s formula
( [4], p. 506), we infer that »(¢) = Mz*(s). But Mz3{s) > [Mz(t)]®, so that to prove Theo-
rem 4 we need merely verify that r{t) = Mz(t) > 0 for 0 < ¢t 7. By virtue of Ito's
formula and relations (26)—(28) we find that the function 7(¢) is the solution of the

ordinary differential equation . ) =1/2ar(t), o<t<T

under the initial condition r(0) = 1. Hence, () >0 for all 0 < ¢ < T, Theorem 5
has been proved.

Note 3, Repeating verbatim the argument used to prove Theorems 24, we see
that they are also valid for inhomogeneous equations of the form (10),

Note 4, Some of the results of the present study can be readily extended to equa-
tions with variable coefficients,

Exampie 1, Let us consider the one-dimensional equation

() = z{t — h) + (t.— 2h), >0, ASD

Let the number z, = 1, z; = 2 + h, the initial function %(6) = 0, and the instant
T'= 2h. Then y(9 + b, 2h) = 1 — 8 for —h < 6 { 0 and the constant § = { (see
formula (6)). From this and from (9) we infer that p% = A -+ k% 4 /5 k3 >> 0. Hence,
the optimal resolvent @(0), which must satisfy the conditions

#& N
S Q2 (s)ds = p,"2, Q Py (s Ah 2R ds =1
Zh th
is equal to
P (0) =p,* (1 —0), —h<ogo

Example 2, The one~dimensional equation z-(1) = 2(t}+o" (t — i)+ z{t —P),
t >0, A>>0 is given,

Let us supnose that z, = 1, z, = 2¢%, that the constant 7 = h , and-that the intial
function ¥(8) = 1, (—n <C 8 < 0). It is easy to show that ¥(8 + &, h) = ¢*. In accord-
ance with Items (1) and (2) of Lemma 1, the optimal initial function ¢(8) is equal to
P(8) = py?e™® since the constant p = 1 and 2p% = &% 1.
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THE TIME-OPTIMAL CONTROL PROBLEM IN SYSTEMS WITH

CONTROLLING FORCES OF BOUNDED MAGNITUDE AND IMPULSE

PMM Vol, 34, N5, 1970, pp. 836-849

A. M, FORMAL'SKII
(Moscow)
(Received November 12, 1969)

The problem of time-optimal control is considered in the case where the controlling
forces are bounded in magnitude and in impulse at the same time, The study is carried
out with the aid of attainability domains, The case where the boundaries of these do~
mains have plane portions and corners is considered, The problem of optimal control
synthesis is solved for certain second-order systems with the indicated reswrictions im-
posed on the controlling forces,

1, Statement of the problem, Let us consider the control system described
by the following linear matrix differential equation with real constant coefficients:

dz/dt = Az + Bu (1.1)
Here z = || z; ||, 4 = |l a;;|l, B =|]bis|, u = || us || are matrices of order

(n x1), (n xn), (n xr), (r x 1) ,respectively, and us = us (t) is a measur-~
able function of time which satisfies the following restrictions simultaneously :

lus ()< M, (Mg = const > 0) (1.2)
oo
(lwldr<ce @ =const>0) (1.3)
0

By b (s =1, ...,r) we denote the sth column of the matrix B (b, = 0 for all s = 1,
-=» 7). Condition (1, 2) expresses the boundedness of the controlling force, and condition
(1. 3) expresses (from the physical standpoint) the boundedness of the impulse of the
controlling force, Inequality (1.3) in certain cases represents the limitation of the pro-
pellant capacity of a thruster,

We shall consider the problem of bringing system (1. 1) to the origin in the minimum
time by means of a control which satisfies conditions (1.2), (1. 3) (e. g. see [1], and,
among other things, the problem of synthesizing the time-optimal control,

When restriction (1.2) alone is imposed, the time-optimal control is, as we know
[2—5], a relay control (we denote the minimum time in this case by 6 = 6 (z)) . The
problem of synthesizing such a control consists in splitting the space X, composed of
the phase coordinates r,, ..., Z, by the switching surfaces into domains in which the
controls us (t) assume the values Msand —M, (s = 1, ..., r). Once this splitting
has been effected, the optimal control is known as a function of the phase coordinates



